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Introducing Information 
Retrieval
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• Information Retrieval (IR) is finding material (usually documents) of an 

unstructured nature (usually text) that satisfies an information need from 

within large collections (usually stored on computers).

o These days we frequently think first of web search, but there are many other cases:

• E-mail search

• Searching your laptop

• Corporate knowledge bases

• Legal information retrieval

Information Retrieval
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Unstructured (text) vs. structured (database) data in 1996
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Unstructured (text) vs. structured (database) data today
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• Collection: A set of documents
o Assume it is a static collection for the moment

• Goal: Retrieve documents with information that is relevant to the user’s 

information need and helps the user complete a task

Basic assumptions of Information Retrieval
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how trap mice alive

Collection

User task

Info need

Query

Results

Search
engine

Query
refinement 

Get rid of mice in a 
politically correct way

Info about removing mice
without killing them 

Misconception?

Misformulation?

Search

The classic search model
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§ Precision : Fraction of retrieved docs that are relevant to the user’s 

information need

§ Recall : Fraction of relevant docs in collection that are retrieved

§ More precise definitions and measurements to follow later

How good are the retrieved docs?
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Term-document incidence 
matrices
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• Which plays of Shakespeare contain the words Brutus AND Caesar  but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for Brutus and Caesar, then strip out lines 

containing Calpurnia?

• Why is that not the answer?
o Slow (for large corpora)

o NOT Calpurnia is non-trivial

o Other operations (e.g., find the word Romans near countrymen) not feasible

o Ranked retrieval (best documents to return)

o Later lectures

Unstructured data in 1620
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Term-document incidence matrices

11

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains 
word, 0 otherwiseBrutus AND Caesar BUT NOT 

Calpurnia
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• So, we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus, Caesar and Calpurnia 

(complemented) è  bitwise AND.

o 110100 AND

o 110111 AND

o 101111 = 

o 100100

Incidence vectors
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Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

12
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•Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

                           When Antony found Julius Caesar dead,

                           He cried almost to roaring; and he wept

                           When at Philippi he found Brutus slain.

•Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

                       Capitol; Brutus killed me.

Answers to query

13
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• Consider N = 1 million documents, each with about 1000 

words.

• Avg 6 bytes/word including spaces/punctuation 

o6GB of data in the documents.

• Say there are M = 500K distinct terms among these.

Bigger collections
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• 500K x 1M matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.

o matrix is extremely sparse.

• What’s a better representation?

o We only record the 1 positions.

Can’t build the matrix

15

Why?
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The Inverted Index
The key data structure 
underlying modern IR
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• For each term t, we must store a list of all documents that contain t.
o Identify each doc by a docID (doc serial number)

• Can we use fixed-size arrays for this?

Inverted index
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What happens if the word Caesar 
is added to document 14? 

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54101
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• We need variable-size postings lists
o On disk, a continuous run of postings is normal and best

o In memory, can use linked lists or variable length arrays

o Some tradeoffs in size/ease of insertion

Inverted index

18

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54101

Posting

Dictionary Postings
Sorted by docID (more later on why).

18
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Inverted index construction

19

Tokenizer

Token stream Friends Romans Countrymen

Linguistic modules

Modified tokens
friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.
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• Tokenization
o Cut character sequence into word tokens
o D eal w ith “John’s”, a state-of-the-art solution

• Normalization
o Map text and query term to same form

o You w ant U.S.A. and U SA to m atch

• Stemming
o We may wish different forms of a root to match
o authorize, authorization

• Stop words
o We may omit very common words (or not)

o the, a, to, of

Initial stages of text processing
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• Sequence of (Modified token, Document ID) pairs.

Indexer steps: Token sequence

21

I did enact Julius
Caesar I was killed 

i’ the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2
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• Sort by terms
– And then docID 

Indexer steps: Sort

22

Core indexing step
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• Multiple term entries in a single document 

are merged.

• Split into Dictionary and Postings

• Doc. frequency information is added.

Indexer steps: Dictionary & Postings
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Why frequency?
Will discuss later.
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Where do we pay in storage?

24

Pointers

Terms 
and 

counts IR system 
implementation
• How do we 

index efficiently?
• How much 

storage do we 
need?

Lists of 
docIDs

24
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Query processing with 
an inverted index

25
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How do we process a query?
Later - what kinds of queries can we process?

The index we just built

26
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• Consider processing the query:
Brutus AND Caesar

o Locate Brutus in the Dictionary;

o Retrieve its postings.

o Locate Caesar in the Dictionary;

o Retrieve its postings.

o “Merge” the two postings (intersect the doc sets):

Query processing: AND

27

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar
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• Walk through the two postings simultaneously, in time linear in the total number of 

postings entries

If the list lengths are x and y, the merge takes O(x+y)
operations.

Crucial: postings sorted by docID.

The merge

28

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar

Answer

2 8End
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Intersecting two postings lists (a “merge” algorithm)

29
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Structured vs. Unstructured Data

30

30
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• Structured data tends to refer to information in “tables”

IR vs. databases: Structured vs unstructured data

31

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
    Salary < 60000 AND Manager = Smith.
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• Typically refers to free text

• Allows

o Keyword queries including operators

o More sophisticated “concept” queries e.g.,

o find all web pages dealing with drug abuse

• Classic model for searching text documents

Unstructured data

32
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• In fact almost no data is “unstructured”

• E.g., this slide has distinctly identified zones such as the Title and Bullets
o… to say nothing of linguistic structure

• Facilitates “semi-structured” search such as

o Title contains data AND Bullets contain search

• Or even

o Title is about Object Oriented Programming AND Author  something like stro*rup 

o where * is the wild-card operator

Semi-structured data: Fielded Indices
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Modeling in Information 
Retrieval

34
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• Modeling in IR is a complex process aimed at producing a ranking function
o Ranking function: a function that assigns scores to documents with regard to a given 

query

• This process consists of two main tasks:

o The conception of a logical framework for representing documents and queries

o The definition of a ranking function that allows quantifying the similarities among 

documents and queries

IR Models

35
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• IR systems usually adopt index terms to index and retrieve documents

• Index term:

• In a restricted sense: it is a keyword that has some meaning on its own; usually plays 

the role of a noun

• In a more general form: it is any word that appears in a document

• Retrieval based on index terms can be implemented efficiently

• Also, index terms are simple to refer to in a query

• Simplicity is important because it reduces the effort of query formulation

Modeling and Ranking

36
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• A ranking is an ordering of the documents that (hopefully) reflects their 

relevance to a user query

• Thus, any IR system has to deal with the problem of predicting which 

documents the users will find relevant

• This problem naturally embodies a degree of uncertainty, or vagueness

Ranking

37
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• An IR model is a quadruple [𝑫, 𝑸, ℱ, ℛ(𝑞! , 𝑑" 	)] where:

1. 𝑫 is a set of logical views for the documents in the collection

2. 𝑸 is a set of logical views for the user queries

3. ℱ  is a framework for modeling documents and queries

4. ℛ(𝑞!, 𝑑"	) is a ranking function

IR Models

38

𝑫

𝑸

𝑑"

𝑞!

ℛ(𝑞! , 𝑑" 	)
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A Taxonomy of IR Models

39
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• In this lecture, we will discuss the following models:
o The Boolean Model

o The Vector Model

o Probabilistic Model

Modeling in Information Retrieval

40
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The Boolean Model

41
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• The Boolean retrieval model is being able to ask a query that is a Boolean 

expression:
– Boolean Queries are queries using AND, OR and NOT to join query terms

• Views each document as a set of words

• Is precise: document matches condition or not.

– Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades. 
• Many search systems you still use are Boolean:

– Email, library catalog, Mac OS X Spotlight

Boolean queries: Exact match

42

42



3/10/24

8

D e a k in  U n iv e r s it y  C R I C O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• Largest commercial (paying subscribers) legal search service (started 
1975; ranking added 1992; new federated search added 2010)

• Tens of terabytes of data; ~700,000 users
• Majority of users still use boolean queries
• Example query:

– What is the statute of limitations in cases involving the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
• /3 = within 3 words, /S = in same sentence

Example: WestLaw

43
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• Another example query:
• Requirements for disabled people to be able to access a workplace
• disabl! /p access! /s work-site work-place (employment /3 place

• Note that SPACE is disjunction, not conjunction!
• Long, precise queries; proximity operators; incrementally developed; not like 

web search
• Many professional searchers still like Boolean search

• You know exactly what you are getting
• But that doesn’t mean it actually works better….

Example: WestLaw

44
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• Exercise: Adapt the merge for the queries:

 Brutus AND NOT Caesar

 Brutus OR NOT Caesar

• Can we still run through the merge in time O(x+y)?   What can we achieve?

Boolean queries: More general merges

45
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• What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

• Can we always merge in “linear” time?

o Linear in what?

• Can we do better?

Merging

46
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• What is the best order for query processing?

• Consider a query that is an AND of n terms.

• For each of the n terms, get its postings, then AND them together.

Query optimization

47

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar
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• Process in order of increasing freq:
o start with smallest set, then keep cutting further.

Query optimization example

48

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Execute the query as (Calpurnia AND Brutus) AND Caesar.

This is why we kept
document freq. in dictionary

48
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• e.g., (madding OR crowd) AND (ignoble OR strife)

• Get doc. freq.’s for all terms.

• Estimate the size of each OR by the sum of its doc. freq.’s (conservative).

• Process in increasing order of OR sizes.

More general optimization

49
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• Recommend a query processing order for

(tangerine OR trees) AND

(marmalade OR skies) AND

(kaleidoscope OR eyes)

• Which two terms should we process first?

Exercise

50

 Term Freq  
  eyes 213312
  kaleidoscope 87009
  marmalade 107913
  skies 271658
  tangerine 46653
  trees 316812

50
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Phrase queries and positional 
indexes

51
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• We want to be able to answer queries such as “stanford university” – as a 

phrase

• Thus the sentence “I went to university at Stanford” is not a match. 
o The concept of phrase queries has proven easily understood by users; one of the few 

“advanced search” ideas that works

o Many more queries are implicit phrase queries

• For this, it no longer suffices to store only

   <term : docs> entries

Phrase queries

52
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• In the postings, store, for each term the position(s) in which tokens of it 

appear:

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Standard Solution: Positional indexes

53
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<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>
• For phrase queries, we use a merge algorithm recursively at the document 

level

• But we now need to deal with more than just equality

Positional index example

54

Which of docs 1,2,4,5
could contain “to be

or not to be”?

54
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• Extract inverted index entries for each distinct term: to, be, or, not

• Merge their doc:position lists to enumerate all positions with “to be or not to be”

Øto: 
o 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

Øbe:  
o 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Processing a phrase query

55
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• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT 
o Again, here, /k means “within k words of”.

• Clearly, positional indexes can be used for such queries.

• Exercise: Adapt the linear merge of postings to handle proximity queries.  

Can you make it work for any value of k?

o This is a little tricky to do correctly and efficiently

Proximity queries

56
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• A positional index expands postings storage substantially
o Even though indices can be compressed

• Nevertheless, a positional index is now standardly used because of the 

power and usefulness of phrase and proximity queries … whether used 

explicitly or implicitly in a ranking retrieval system.

Positional index size

57
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• Need an entry for each occurrence, not just once per document

• Index size depends on average document size

o Average web page has <1000 terms

o SEC filings, books, even some epic poems … easily 100,000 terms

• Consider a term with frequency 0.1%

Positional index size

58
1001100,000

111000

Positional postingsPostingsDocument size
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• A positional index is 2–4 as large as a non-positional index

• Positional index size 35–50% of volume of original text

o Caveat: all of this holds for “English-like” languages

Rules of thumb

59
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The Vector Model

60

60
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• Ranked retrieval

• Scoring documents

• Term frequency

• Collection statistics

• Weighting schemes

• Vector space scoring

Outline

61
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Ranked retrieval

62
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• So far, our queries have all been Boolean

o Documents either match or don’t

• Good for expert users with precise understanding of their needs and the collection
o Also good for applications: Applications can easily consume 1000s of results

• Not good for the majority of users
o Most users incapable of writing Boolean queries (or they are, but they think it’s too much work)

o Most users don’t want to wade through 1000s of results

o This is particularly true of web search

Ranked retrieval

63
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• Boolean queries often result in either too few (=0) or too many (1000s) 

results.

• Query 1: “standard user dlink 650” → 200,000 hits

• Query 2: “standard user dlink 650 no card found”: 0 hits

• It takes a lot of skill to come up with a query that produces a manageable 

number of hits.

o AND gives too few; OR gives too many

Problem with Boolean search: feast or famine

64
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• Rather than a set of documents satisfying a query expression, in ranked 

retrieval, the system returns an ordering over the (top) documents in the 

collection for a query

• Free text queries: Rather than a query language of operators and 

expressions, the user’s query is just one or more words in a human language

• In principle, there are two separate choices here, but in practice, ranked 

retrieval has normally been associated with free text queries and vice versa

Ranked retrieval models

65
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• When a system produces a ranked result set, large result sets are not an 

issue

o Indeed, the size of the result set is not an issue

o We just show the top k ( ≈ 10) results

o We don’t overwhelm the user

o Premise: the ranking algorithm works

Feast or famine: not a problem in ranked retrieval

66
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Scoring documents

67
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• We wish to return in order the documents most likely to be useful to the 

searcher

• How can we rank-order the documents in the collection with respect to a 

query?

• Assign a score – say in [0, 1] – to each document

• This score measures how well document and query “match”.

Scoring as the basis of ranked retrieval

68
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• We need a way of assigning a score to a query/document pair

• Let’s start with a one-term query

• If the query term does not occur in the document: score should be 0

• The more frequent the query term in the document, the higher the score 

(should be)

• We will look at a number of alternatives for this

Query-document matching scores

69
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• jaccard(A,B) = |A ∩ B| / |A ∪ B|

• jaccard(A,A) = 1

• jaccard(A,B) = 0 if A ∩ B = 0

• A and B don’t have to be the same size

• Always assigns a number between 0 and 1

Take 1: Jaccard coefficient

70
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• What is the query-document match score that the Jaccard coefficient 

computes for each of the two documents below?

• Query: ides of march

• Document 1: caesar died in march

• Document 2: the long march

Jaccard coefficient: Scoring example

71
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• It doesn’t consider term frequency (how many times a term occurs in a 

document)

• Rare terms in a collection are more informative than frequent terms. Jaccard 

doesn’t consider this information

• We need a more sophisticated way of normalizing for length

• Later in this lecture, we’ll use ⁄𝐴 ∩ 𝐵 𝐴 ∪ 𝐵  

• . . . instead of ⁄𝐴 ∩ 𝐵 𝐴 ∪ 𝐵  (Jaccard) for length normalization.

Issues with Jaccard for scoring

72
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Term frequency

73
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Recall: Binary term-document incidence matrix

74

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ 0,1 #  

74
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• Consider the number of occurrences of a term in a document: 
o Each document is a count vector in ℕv: a column below 

Term-document count matrices

75

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0
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• Vector representation doesn’t consider the ordering of words in a document

• John is quicker than Mary and Mary is quicker than John have the same vectors

• This is called the bag of words model

• In a sense, this is a step back: The positional index was able to distinguish 

these two documents

• The IIR book considers “recovering” positional information

• For now: bag of words model

Bag of words model
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• The term frequency 𝑡𝑓$,&  of term 𝑡 in document 𝑑 is defined as the number 

of times that t occurs in 𝑑
• We want to use tf when computing query-document match scores. But how?

• Raw term frequency is not what we want:

o A document with 10 occurrences of the term is more relevant than a document with 1 

occurrence of the term

o But not 10 times more relevant

• Relevance does not increase proportionally with term frequency

Term frequency 𝑡𝑓

77 NB: frequency = count in IR

77
D e a k in  U n iv e r s it y  C R I C O S  P r o v id e r  C o d e :  0 0 1 1 3 B

• The log frequency weight of term 𝑡 in 𝑑 is

𝑤!,# = %
1+ 𝑙𝑜𝑔$% 𝑡𝑓!,# , if	𝑡𝑓!,# > 0

0, otherwise
o 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

• Score for a document-query pair: sum over terms t in both q and d:

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) = @
!∈'∩#

1+ 𝑙𝑜𝑔$% 𝑡𝑓!,#

• The score is 0 if none of the query terms is present in the document

Log-frequency weighting
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Collection statistics

79
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• Rare terms are more informative than frequent terms
o Recall stop words

• Consider a term in the query that is rare in the collection (e.g., 

arachnocentric)

• A document containing this term is very likely to be relevant to the query 

arachnocentric

• → We want a high weight for rare terms like arachnocentric

Document frequency

80
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• Rare terms are more informative than frequent terms
o Recall stop words

• Consider a term in the query that is rare in the collection (e.g., 

arachnocentric)

• A document containing this term is very likely to be relevant to the query 

arachnocentric

• → We want a high weight for rare terms like arachnocentric

Document frequency

81
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• Frequent terms are less informative than rare terms

• Consider a query term that is frequent in the collection (e.g., high, increase, line)

• A document containing such a term is more likely to be relevant than a document that 

doesn’t

• But it’s not a sure indicator of relevanceـ
• → For frequent terms, we want high positive weights for words like high, increase, and 

line

• But lower weights than for rare terms

• We will use document frequency (df) to capture this

Document frequency, continued
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• 𝑑𝑓$  is the document frequency of 𝑡: the number of documents that contain 𝑡
o 𝑑𝑓$ is an inverse measure of the informativeness of 𝑡

o 𝑑𝑓$ ≤ 𝑁

• We define the 𝑖𝑑𝑓 (inverse document frequency) of 𝑡 by

𝑖𝑑𝑓$ = 𝑙𝑜𝑔'( 7𝑁 𝑑𝑓$
o We use 𝑙𝑜𝑔'( 7) &*!  instead of 7) &*! to “dampen” the effect of idf

idf weight

83 Will turn out the base of the log is immaterial.
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idf example, suppose N = 1 million

84

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

𝑖𝑑𝑓A = 𝑙𝑜𝑔BC (𝑁 𝑑𝑓A
There is one 𝑖𝑑𝑓 value for each term 𝑡 in a collection

6

3

4

2

1
0

84
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• Does idf have an effect on ranking for one-term queries, like
o iPhone

• idf has no effect on ranking one term queries

o idf affects the ranking of documents for queries with at least two terms

o For the query capricious person, idf weighting makes occurrences of capricious count 

for much more in the final document ranking than occurrences of person.

Effect of idf on ranking

85
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• The collection frequency of t is the number of occurrences of t in the collection, 
counting multiple occurrences

• Example:

• Which word is a better search term (and should get a higher weight)?

Collection vs. Document frequency

86

Word Collection frequency Document frequency

insurance 10,440 3,997

try 10,422 8,760
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• Consider the 𝑡𝑓, 𝑖𝑑𝑓, and 𝑡𝑓 − 𝑖𝑑𝑓 weights for the Wall Street Journal reference collection

• To study their behavior, we would like to plot them together
• While 𝑖𝑑𝑓 is computed over all the collection, 𝑡𝑓 is computed on a per document basis. Thus, we 

need a representation of 𝑡𝑓 based on all the collection, which is provided by the term collection 
frequency

• This reasoning leads to the following 𝑡𝑓 and 𝑖𝑑𝑓 term weights:

𝑤! = 1+ 𝑙𝑜𝑔$%@
)*$

+

𝑡𝑓,,) , 𝑖𝑑𝑓! = 𝑙𝑜𝑔$% F𝑁 𝑑𝑓!  

TF-IDF Properties

87
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• Plotting 𝑡𝑓 and 𝑖𝑑𝑓 in logarithmic scale yields

• We observe that 𝑡𝑓 and 𝑖𝑑𝑓 weights present power-law behaviors that balance each 

other 

• The terms of intermediate 𝑖𝑑𝑓 values display maximum 𝑡𝑓	 − 𝑖𝑑𝑓weights and are most 

interesting for ranking

TF-IDF Properties

88
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Weighting schemes

89
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• The 𝑡𝑓 − 𝑖𝑑𝑓 weight of a term is the product of its tf weight and its idf weight

𝑡𝑓 − 𝑖𝑑𝑓!,# = 1+ 𝑙𝑜𝑔$% 𝑡𝑓!,# ×𝑙𝑜𝑔$% 2𝑁 𝑑𝑓!
• Best known weighting scheme in information retrieval
o Note: the “-” in 𝑡𝑓 − 𝑖𝑑𝑓 is a hyphen, not a minus sign!

o Alternative names: 𝑡𝑓. 𝑖𝑑𝑓, 𝑡𝑓×𝑖𝑑𝑓

• Increases with the number of occurrences within a document

• Increases with the rarity of the term in the collection

tf-idf weighting

90

90



3/10/24

16

D e a k in  U n iv e r s it y  C R I C O S  P r o v id e r  C o d e :  0 0 1 1 3 B

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) = <
!∈'∩#

𝑡𝑓 − 𝑖𝑑𝑓!,#

• There are many variants

oHow “tf” is computed (with/without logs)

oWhether the terms in the query are also weighted

o… 

Score for a document given a query

91
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Binary → count → weight matrix

92

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of tf-idf weights ∈ ℝ #

92
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Vector space scoring

93
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• So we have a |V|-dimensional vector space

• Terms are axes of the space

• Documents are points or vectors in this space

• Very high-dimensional: tens of millions of dimensions when you apply this to 

a web search engine

• These are very sparse vectors - most entries are zero

Documents as vectors

94
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• Key idea 1: Do the same for queries: represent them as vectors in the space

• Key idea 2: Rank documents according to their proximity to the query in this space

• proximity = similarity of vectors

• proximity ≈ inverse of distance

• Recall: We do this because we want to get away from the you’re-either-in-or-out 

Boolean model.

• Instead: rank more relevant documents higher than less relevant documents

Queries as vectors

95
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• First cut: distance between two points
o ( = distance between the end points of the two vectors)

• Euclidean distance?

• Euclidean distance is a bad idea . . .

• . . . because Euclidean distance is large for vectors of different lengths

Formalizing vector space proximity

96
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• The Euclidean distance between q

and d2 is large even though the

distribution of terms in the query q 

and the distribution of terms in the 

document d2 are very similar.

Why distance is a bad idea

97
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• Thought experiment: take a document d and append it to itself. Call this 

document d′

• “Semantically” d and d′ have the same content

• The Euclidean distance between the two documents can be quite large

• The angle between the two documents is 0, corresponding to maximal 

similarity

• Key idea: Rank documents according to angle with query

Use angle instead of distance

98
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• The following two notions are equivalent

o Rank documents in decreasing order 

of the angle between query and 

document

o Rank documents in increasing order  

of cosine(query,document)

• Cosine is a monotonically decreasing 

function for the interval [0o, 180o]

From angles to cosines

99

But how – and why – 
should we be computing 

cosines?
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• A vector can be (length-) normalized by dividing each of its components by its length – for this we 

use the 𝐿- norm:

𝑥⃗ - = @
,
𝑥,-

• Dividing a vector by its 𝐿- norm makes it a unit (length) vector (on surface of unit hypersphere)
• Effect on the two documents d and d′ (d appended to itself) from earlier slide: they have identical 

vectors after length-normalization.
o Long and short documents now have comparable weights

Length normalization

100
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cosine(query,document)

101

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.
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• For length-normalized vectors, cosine similarity is simply the dot product (or 

scalar product):

cos 𝑞⃗, 𝑑 = 𝑞⃗ A 𝑑 =<
,*$

.
𝑞,𝑑,

o for 𝑞, 𝑑 length-normalized.

Cosine for length-normalized vectors

102
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Cosine similarity illustrated

103
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• How similar are the novels:
o  SaS: Sense and Sensibility

o PaP: Pride and Prejudice, and

o WH: Wuthering Heights?

Cosine similarity amongst 3 documents

104

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting
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3 documents example contd.

105

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

Log frequency weighting After length normalization

cos(SaS,PaP) ≈ 0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
   ≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?
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Computing cosine scores for ranking

106

106

D e a k in  U n iv e r s it y  C R I C O S  P r o v id e r  C o d e :  0 0 1 1 3 B

tf-idf weighting has many variants

107

Columns headed ‘n’ are acronyms for weight schemes

Why is the base of the log in idf immaterial?
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• Many search engines allow for different weightings for queries vs. documents

• SMART Notation: denotes the combination in use in an engine, with the notation 

ddd.qqq, using the acronyms from the previous table

• A very standard weighting scheme is: lnc.ltc
• Document: logarithmic tf (l as first character), no idf and cosine normalization

• Query: logarithmic tf (l in leftmost column), idf (t in second column), no 

normalization …

Weighting may differ in queries vs documents

108

A bad idea?

108
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tf-idf example: lnc.ltc

109

Term Query Document Prod

tf-
raw

tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

 

12 + 02 +12 +1.32 »1.92
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• Represent the query as a weighted tf-idf vector

• Represent each document as a weighted tf-idf vector

• Compute the cosine similarity score for the query vector and each document 

vector

• Rank documents with respect to the query by score

• Return the top K (e.g., K = 10) to the user

Summary – vector space ranking
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