
3/10/24

1

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 1 - Information Retrieval Part 1
Inverted Indices Scoring, term weighting and the vector
space model

1

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Introducing Information
Retrieval

2

2
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Information Retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).

o These days we frequently think first of web search, but there are many other cases:

• E-mail search

• Searching your laptop

• Corporate knowledge bases

• Legal information retrieval

Information Retrieval

3

3

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Unstructured (text) vs. structured (database) data in 1996

4

4

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Unstructured (text) vs. structured (database) data today

5

5
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Collection: A set of documents
o Assume it is a static collection for the moment

• Goal: Retrieve documents with information that is relevant to the user’s

information need and helps the user complete a task

Basic assumptions of Information Retrieval

6

6

mailto:reda.bouadjenek@deakin.edu.au

3/10/24

2

how trap mice alive

Collection

User task

Info need

Query

Results

Search
engine

Query
refinement

Get rid of mice in a
politically correct way

Info about removing mice
without killing them

Misconception?

Misformulation?

Search

The classic search model

7

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

§ Precision : Fraction of retrieved docs that are relevant to the user’s

information need

§ Recall : Fraction of relevant docs in collection that are retrieved

§ More precise definitions and measurements to follow later

How good are the retrieved docs?

8

8
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Term-document incidence
matrices

9

9

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for Brutus and Caesar, then strip out lines

containing Calpurnia?

• Why is that not the answer?
o Slow (for large corpora)

o NOT Calpurnia is non-trivial

o Other operations (e.g., find the word Romans near countrymen) not feasible

o Ranked retrieval (best documents to return)

o Later lectures

Unstructured data in 1620

10

10

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Term-document incidence matrices

11

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, 0 otherwiseBrutus AND Caesar BUT NOT

Calpurnia

11
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• So, we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus, Caesar and Calpurnia

(complemented) è bitwise AND.

o 110100 AND

o 110111 AND

o 101111 =

o 100100

Incidence vectors

12

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

12

3/10/24

3

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

•Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

 When Antony found Julius Caesar dead,

 He cried almost to roaring; and he wept

 When at Philippi he found Brutus slain.

•Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

 Capitol; Brutus killed me.

Answers to query

13

13

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider N = 1 million documents, each with about 1000

words.

• Avg 6 bytes/word including spaces/punctuation

o6GB of data in the documents.

• Say there are M = 500K distinct terms among these.

Bigger collections

14

14
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• 500K x 1M matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.

o matrix is extremely sparse.

• What’s a better representation?

o We only record the 1 positions.

Can’t build the matrix

15

Why?

15

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Inverted Index
The key data structure
underlying modern IR

16

16

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• For each term t, we must store a list of all documents that contain t.
o Identify each doc by a docID (doc serial number)

• Can we use fixed-size arrays for this?

Inverted index

17

What happens if the word Caesar
is added to document 14?

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54101

17
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• We need variable-size postings lists
o On disk, a continuous run of postings is normal and best

o In memory, can use linked lists or variable length arrays

o Some tradeoffs in size/ease of insertion

Inverted index

18

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31

174

54101

Posting

Dictionary Postings
Sorted by docID (more later on why).

18

3/10/24

4

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Inverted index construction

19

Tokenizer

Token stream Friends Romans Countrymen

Linguistic modules

Modified tokens
friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.

19

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Tokenization
o Cut character sequence into word tokens
o D eal w ith “John’s”, a state-of-the-art solution

• Normalization
o Map text and query term to same form

o You w ant U.S.A. and U SA to m atch

• Stemming
o We may wish different forms of a root to match
o authorize, authorization

• Stop words
o We may omit very common words (or not)

o the, a, to, of

Initial stages of text processing

20

20
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Sequence of (Modified token, Document ID) pairs.

Indexer steps: Token sequence

21

I did enact Julius
Caesar I was killed

i’ the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

21

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Sort by terms
– And then docID

Indexer steps: Sort

22

Core indexing step

22

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Multiple term entries in a single document

are merged.

• Split into Dictionary and Postings

• Doc. frequency information is added.

Indexer steps: Dictionary & Postings

23

Why frequency?
Will discuss later.

23
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Where do we pay in storage?

24

Pointers

Terms
and

counts IR system
implementation
• How do we

index efficiently?
• How much

storage do we
need?

Lists of
docIDs

24

3/10/24

5

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Query processing with
an inverted index

25

25

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

How do we process a query?
Later - what kinds of queries can we process?

The index we just built

26

26
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider processing the query:
Brutus AND Caesar

o Locate Brutus in the Dictionary;

o Retrieve its postings.

o Locate Caesar in the Dictionary;

o Retrieve its postings.

o “Merge” the two postings (intersect the doc sets):

Query processing: AND

27

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar

27

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Walk through the two postings simultaneously, in time linear in the total number of

postings entries

If the list lengths are x and y, the merge takes O(x+y)
operations.

Crucial: postings sorted by docID.

The merge

28

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar

Answer

2 8End

28

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Intersecting two postings lists (a “merge” algorithm)

29

29
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Structured vs. Unstructured Data

30

30

3/10/24

6

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Structured data tends to refer to information in “tables”

IR vs. databases: Structured vs unstructured data

31

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
 Salary < 60000 AND Manager = Smith.

31

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Typically refers to free text

• Allows

o Keyword queries including operators

o More sophisticated “concept” queries e.g.,

o find all web pages dealing with drug abuse

• Classic model for searching text documents

Unstructured data

32

32
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• In fact almost no data is “unstructured”

• E.g., this slide has distinctly identified zones such as the Title and Bullets
o… to say nothing of linguistic structure

• Facilitates “semi-structured” search such as

o Title contains data AND Bullets contain search

• Or even

o Title is about Object Oriented Programming AND Author something like stro*rup

o where * is the wild-card operator

Semi-structured data: Fielded Indices

33

33

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Modeling in Information
Retrieval

34

34

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Modeling in IR is a complex process aimed at producing a ranking function
o Ranking function: a function that assigns scores to documents with regard to a given

query

• This process consists of two main tasks:

o The conception of a logical framework for representing documents and queries

o The definition of a ranking function that allows quantifying the similarities among

documents and queries

IR Models

35

35
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• IR systems usually adopt index terms to index and retrieve documents

• Index term:

• In a restricted sense: it is a keyword that has some meaning on its own; usually plays

the role of a noun

• In a more general form: it is any word that appears in a document

• Retrieval based on index terms can be implemented efficiently

• Also, index terms are simple to refer to in a query

• Simplicity is important because it reduces the effort of query formulation

Modeling and Ranking

36

36

3/10/24

7

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• A ranking is an ordering of the documents that (hopefully) reflects their

relevance to a user query

• Thus, any IR system has to deal with the problem of predicting which

documents the users will find relevant

• This problem naturally embodies a degree of uncertainty, or vagueness

Ranking

37

37

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• An IR model is a quadruple [𝑫, 𝑸, ℱ, ℛ(𝑞! , 𝑑")] where:

1. 𝑫 is a set of logical views for the documents in the collection

2. 𝑸 is a set of logical views for the user queries

3. ℱ is a framework for modeling documents and queries

4. ℛ(𝑞!, 𝑑") is a ranking function

IR Models

38

𝑫

𝑸

𝑑"

𝑞!

ℛ(𝑞! , 𝑑")

38
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

A Taxonomy of IR Models

39

39

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• In this lecture, we will discuss the following models:
o The Boolean Model

o The Vector Model

o Probabilistic Model

Modeling in Information Retrieval

40

40

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Boolean Model

41

41
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The Boolean retrieval model is being able to ask a query that is a Boolean

expression:
– Boolean Queries are queries using AND, OR and NOT to join query terms

• Views each document as a set of words

• Is precise: document matches condition or not.

– Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades.
• Many search systems you still use are Boolean:

– Email, library catalog, Mac OS X Spotlight

Boolean queries: Exact match

42

42

3/10/24

8

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Largest commercial (paying subscribers) legal search service (started
1975; ranking added 1992; new federated search added 2010)

• Tens of terabytes of data; ~700,000 users
• Majority of users still use boolean queries
• Example query:

– What is the statute of limitations in cases involving the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
• /3 = within 3 words, /S = in same sentence

Example: WestLaw

43

43

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Another example query:
• Requirements for disabled people to be able to access a workplace
• disabl! /p access! /s work-site work-place (employment /3 place

• Note that SPACE is disjunction, not conjunction!
• Long, precise queries; proximity operators; incrementally developed; not like

web search
• Many professional searchers still like Boolean search

• You know exactly what you are getting
• But that doesn’t mean it actually works better….

Example: WestLaw

44

44
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Exercise: Adapt the merge for the queries:

 Brutus AND NOT Caesar

 Brutus OR NOT Caesar

• Can we still run through the merge in time O(x+y)? What can we achieve?

Boolean queries: More general merges

45

45

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

• Can we always merge in “linear” time?

o Linear in what?

• Can we do better?

Merging

46

46

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• What is the best order for query processing?

• Consider a query that is an AND of n terms.

• For each of the n terms, get its postings, then AND them together.

Query optimization

47

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar

47
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Process in order of increasing freq:
o start with smallest set, then keep cutting further.

Query optimization example

48

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64 128

13 16

Execute the query as (Calpurnia AND Brutus) AND Caesar.

This is why we kept
document freq. in dictionary

48

3/10/24

9

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• e.g., (madding OR crowd) AND (ignoble OR strife)

• Get doc. freq.’s for all terms.

• Estimate the size of each OR by the sum of its doc. freq.’s (conservative).

• Process in increasing order of OR sizes.

More general optimization

49

49

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Recommend a query processing order for

(tangerine OR trees) AND

(marmalade OR skies) AND

(kaleidoscope OR eyes)

• Which two terms should we process first?

Exercise

50

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

50
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Phrase queries and positional
indexes

51

51

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• We want to be able to answer queries such as “stanford university” – as a

phrase

• Thus the sentence “I went to university at Stanford” is not a match.
o The concept of phrase queries has proven easily understood by users; one of the few

“advanced search” ideas that works

o Many more queries are implicit phrase queries

• For this, it no longer suffices to store only

 <term : docs> entries

Phrase queries

52

52

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• In the postings, store, for each term the position(s) in which tokens of it

appear:

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Standard Solution: Positional indexes

53

53
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>
• For phrase queries, we use a merge algorithm recursively at the document

level

• But we now need to deal with more than just equality

Positional index example

54

Which of docs 1,2,4,5
could contain “to be

or not to be”?

54

3/10/24

10

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Extract inverted index entries for each distinct term: to, be, or, not

• Merge their doc:position lists to enumerate all positions with “to be or not to be”

Øto:
o 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

Øbe:
o 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Processing a phrase query

55

55

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
o Again, here, /k means “within k words of”.

• Clearly, positional indexes can be used for such queries.

• Exercise: Adapt the linear merge of postings to handle proximity queries.

Can you make it work for any value of k?

o This is a little tricky to do correctly and efficiently

Proximity queries

56

56
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• A positional index expands postings storage substantially
o Even though indices can be compressed

• Nevertheless, a positional index is now standardly used because of the

power and usefulness of phrase and proximity queries … whether used

explicitly or implicitly in a ranking retrieval system.

Positional index size

57

57

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Need an entry for each occurrence, not just once per document

• Index size depends on average document size

o Average web page has <1000 terms

o SEC filings, books, even some epic poems … easily 100,000 terms

• Consider a term with frequency 0.1%

Positional index size

58
1001100,000

111000

Positional postingsPostingsDocument size

58

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• A positional index is 2–4 as large as a non-positional index

• Positional index size 35–50% of volume of original text

o Caveat: all of this holds for “English-like” languages

Rules of thumb

59

59
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Vector Model

60

60

3/10/24

11

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Ranked retrieval

• Scoring documents

• Term frequency

• Collection statistics

• Weighting schemes

• Vector space scoring

Outline

61

61

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Ranked retrieval

62

62
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• So far, our queries have all been Boolean

o Documents either match or don’t

• Good for expert users with precise understanding of their needs and the collection
o Also good for applications: Applications can easily consume 1000s of results

• Not good for the majority of users
o Most users incapable of writing Boolean queries (or they are, but they think it’s too much work)

o Most users don’t want to wade through 1000s of results

o This is particularly true of web search

Ranked retrieval

63

63

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Boolean queries often result in either too few (=0) or too many (1000s)

results.

• Query 1: “standard user dlink 650” → 200,000 hits

• Query 2: “standard user dlink 650 no card found”: 0 hits

• It takes a lot of skill to come up with a query that produces a manageable

number of hits.

o AND gives too few; OR gives too many

Problem with Boolean search: feast or famine

64

64

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Rather than a set of documents satisfying a query expression, in ranked

retrieval, the system returns an ordering over the (top) documents in the

collection for a query

• Free text queries: Rather than a query language of operators and

expressions, the user’s query is just one or more words in a human language

• In principle, there are two separate choices here, but in practice, ranked

retrieval has normally been associated with free text queries and vice versa

Ranked retrieval models

65

65
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• When a system produces a ranked result set, large result sets are not an

issue

o Indeed, the size of the result set is not an issue

o We just show the top k (≈ 10) results

o We don’t overwhelm the user

o Premise: the ranking algorithm works

Feast or famine: not a problem in ranked retrieval

66

66

3/10/24

12

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Scoring documents

67

67

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• We wish to return in order the documents most likely to be useful to the

searcher

• How can we rank-order the documents in the collection with respect to a

query?

• Assign a score – say in [0, 1] – to each document

• This score measures how well document and query “match”.

Scoring as the basis of ranked retrieval

68

68
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• We need a way of assigning a score to a query/document pair

• Let’s start with a one-term query

• If the query term does not occur in the document: score should be 0

• The more frequent the query term in the document, the higher the score

(should be)

• We will look at a number of alternatives for this

Query-document matching scores

69

69

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• jaccard(A,B) = |A ∩ B| / |A ∪ B|

• jaccard(A,A) = 1

• jaccard(A,B) = 0 if A ∩ B = 0

• A and B don’t have to be the same size

• Always assigns a number between 0 and 1

Take 1: Jaccard coefficient

70

70

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• What is the query-document match score that the Jaccard coefficient

computes for each of the two documents below?

• Query: ides of march

• Document 1: caesar died in march

• Document 2: the long march

Jaccard coefficient: Scoring example

71

71
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• It doesn’t consider term frequency (how many times a term occurs in a

document)

• Rare terms in a collection are more informative than frequent terms. Jaccard

doesn’t consider this information

• We need a more sophisticated way of normalizing for length

• Later in this lecture, we’ll use ⁄𝐴 ∩ 𝐵 𝐴 ∪ 𝐵

• . . . instead of ⁄𝐴 ∩ 𝐵 𝐴 ∪ 𝐵 (Jaccard) for length normalization.

Issues with Jaccard for scoring

72

72

3/10/24

13

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Term frequency

73

73

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Recall: Binary term-document incidence matrix

74

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ 0,1 #

74
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider the number of occurrences of a term in a document:
o Each document is a count vector in ℕv: a column below

Term-document count matrices

75

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

75

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Vector representation doesn’t consider the ordering of words in a document

• John is quicker than Mary and Mary is quicker than John have the same vectors

• This is called the bag of words model

• In a sense, this is a step back: The positional index was able to distinguish

these two documents

• The IIR book considers “recovering” positional information

• For now: bag of words model

Bag of words model

76

76

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The term frequency 𝑡𝑓$,& of term 𝑡 in document 𝑑 is defined as the number

of times that t occurs in 𝑑
• We want to use tf when computing query-document match scores. But how?

• Raw term frequency is not what we want:

o A document with 10 occurrences of the term is more relevant than a document with 1

occurrence of the term

o But not 10 times more relevant

• Relevance does not increase proportionally with term frequency

Term frequency 𝑡𝑓

77 NB: frequency = count in IR

77
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The log frequency weight of term 𝑡 in 𝑑 is

𝑤!,# = %
1+ 𝑙𝑜𝑔$% 𝑡𝑓!,# , if	𝑡𝑓!,# > 0

0, otherwise
o 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

• Score for a document-query pair: sum over terms t in both q and d:

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) = @
!∈'∩#

1+ 𝑙𝑜𝑔$% 𝑡𝑓!,#

• The score is 0 if none of the query terms is present in the document

Log-frequency weighting

78

78

3/10/24

14

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Collection statistics

79

79

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Rare terms are more informative than frequent terms
o Recall stop words

• Consider a term in the query that is rare in the collection (e.g.,

arachnocentric)

• A document containing this term is very likely to be relevant to the query

arachnocentric

• → We want a high weight for rare terms like arachnocentric

Document frequency

80

80
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Rare terms are more informative than frequent terms
o Recall stop words

• Consider a term in the query that is rare in the collection (e.g.,

arachnocentric)

• A document containing this term is very likely to be relevant to the query

arachnocentric

• → We want a high weight for rare terms like arachnocentric

Document frequency

81

81

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Frequent terms are less informative than rare terms

• Consider a query term that is frequent in the collection (e.g., high, increase, line)

• A document containing such a term is more likely to be relevant than a document that

doesn’t

• But it’s not a sure indicator of relevanceـ
• → For frequent terms, we want high positive weights for words like high, increase, and

line

• But lower weights than for rare terms

• We will use document frequency (df) to capture this

Document frequency, continued

82

82

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• 𝑑𝑓$ is the document frequency of 𝑡: the number of documents that contain 𝑡
o 𝑑𝑓$ is an inverse measure of the informativeness of 𝑡

o 𝑑𝑓$ ≤ 𝑁

• We define the 𝑖𝑑𝑓 (inverse document frequency) of 𝑡 by

𝑖𝑑𝑓$ = 𝑙𝑜𝑔'(7𝑁 𝑑𝑓$
o We use 𝑙𝑜𝑔'(7) &*! instead of 7) &*! to “dampen” the effect of idf

idf weight

83 Will turn out the base of the log is immaterial.

83
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

idf example, suppose N = 1 million

84

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

𝑖𝑑𝑓A = 𝑙𝑜𝑔BC (𝑁 𝑑𝑓A
There is one 𝑖𝑑𝑓 value for each term 𝑡 in a collection

6

3

4

2

1
0

84

3/10/24

15

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Does idf have an effect on ranking for one-term queries, like
o iPhone

• idf has no effect on ranking one term queries

o idf affects the ranking of documents for queries with at least two terms

o For the query capricious person, idf weighting makes occurrences of capricious count

for much more in the final document ranking than occurrences of person.

Effect of idf on ranking

85

85

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The collection frequency of t is the number of occurrences of t in the collection,
counting multiple occurrences

• Example:

• Which word is a better search term (and should get a higher weight)?

Collection vs. Document frequency

86

Word Collection frequency Document frequency

insurance 10,440 3,997

try 10,422 8,760

86
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Consider the 𝑡𝑓, 𝑖𝑑𝑓, and 𝑡𝑓 − 𝑖𝑑𝑓 weights for the Wall Street Journal reference collection

• To study their behavior, we would like to plot them together
• While 𝑖𝑑𝑓 is computed over all the collection, 𝑡𝑓 is computed on a per document basis. Thus, we

need a representation of 𝑡𝑓 based on all the collection, which is provided by the term collection
frequency

• This reasoning leads to the following 𝑡𝑓 and 𝑖𝑑𝑓 term weights:

𝑤! = 1+ 𝑙𝑜𝑔$%@
)*$

+

𝑡𝑓,,) , 𝑖𝑑𝑓! = 𝑙𝑜𝑔$% F𝑁 𝑑𝑓!

TF-IDF Properties

87

87

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Plotting 𝑡𝑓 and 𝑖𝑑𝑓 in logarithmic scale yields

• We observe that 𝑡𝑓 and 𝑖𝑑𝑓 weights present power-law behaviors that balance each

other

• The terms of intermediate 𝑖𝑑𝑓 values display maximum 𝑡𝑓	 − 𝑖𝑑𝑓weights and are most

interesting for ranking

TF-IDF Properties

88

88

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Weighting schemes

89

89
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The 𝑡𝑓 − 𝑖𝑑𝑓 weight of a term is the product of its tf weight and its idf weight

𝑡𝑓 − 𝑖𝑑𝑓!,# = 1+ 𝑙𝑜𝑔$% 𝑡𝑓!,# ×𝑙𝑜𝑔$% 2𝑁 𝑑𝑓!
• Best known weighting scheme in information retrieval
o Note: the “-” in 𝑡𝑓 − 𝑖𝑑𝑓 is a hyphen, not a minus sign!

o Alternative names: 𝑡𝑓. 𝑖𝑑𝑓, 𝑡𝑓×𝑖𝑑𝑓

• Increases with the number of occurrences within a document

• Increases with the rarity of the term in the collection

tf-idf weighting

90

90

3/10/24

16

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) = <
!∈'∩#

𝑡𝑓 − 𝑖𝑑𝑓!,#

• There are many variants

oHow “tf” is computed (with/without logs)

oWhether the terms in the query are also weighted

o…

Score for a document given a query

91

91

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Binary → count → weight matrix

92

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued vector of tf-idf weights ∈ ℝ #

92
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Vector space scoring

93

93

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• So we have a |V|-dimensional vector space

• Terms are axes of the space

• Documents are points or vectors in this space

• Very high-dimensional: tens of millions of dimensions when you apply this to

a web search engine

• These are very sparse vectors - most entries are zero

Documents as vectors

94

94

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Key idea 1: Do the same for queries: represent them as vectors in the space

• Key idea 2: Rank documents according to their proximity to the query in this space

• proximity = similarity of vectors

• proximity ≈ inverse of distance

• Recall: We do this because we want to get away from the you’re-either-in-or-out

Boolean model.

• Instead: rank more relevant documents higher than less relevant documents

Queries as vectors

95

95
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• First cut: distance between two points
o (= distance between the end points of the two vectors)

• Euclidean distance?

• Euclidean distance is a bad idea . . .

• . . . because Euclidean distance is large for vectors of different lengths

Formalizing vector space proximity

96

96

3/10/24

17

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The Euclidean distance between q

and d2 is large even though the

distribution of terms in the query q

and the distribution of terms in the

document d2 are very similar.

Why distance is a bad idea

97

97

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Thought experiment: take a document d and append it to itself. Call this

document d′

• “Semantically” d and d′ have the same content

• The Euclidean distance between the two documents can be quite large

• The angle between the two documents is 0, corresponding to maximal

similarity

• Key idea: Rank documents according to angle with query

Use angle instead of distance

98

98
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The following two notions are equivalent

o Rank documents in decreasing order

of the angle between query and

document

o Rank documents in increasing order

of cosine(query,document)

• Cosine is a monotonically decreasing

function for the interval [0o, 180o]

From angles to cosines

99

But how – and why –
should we be computing

cosines?

99

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• A vector can be (length-) normalized by dividing each of its components by its length – for this we

use the 𝐿- norm:

𝑥⃗ - = @
,
𝑥,-

• Dividing a vector by its 𝐿- norm makes it a unit (length) vector (on surface of unit hypersphere)
• Effect on the two documents d and d′ (d appended to itself) from earlier slide: they have identical

vectors after length-normalization.
o Long and short documents now have comparable weights

Length normalization

100

100

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

cosine(query,document)

101

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(











Dot product Unit vectors

101
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• For length-normalized vectors, cosine similarity is simply the dot product (or

scalar product):

cos 𝑞⃗, 𝑑 = 𝑞⃗ A 𝑑 =<
,*$

.
𝑞,𝑑,

o for 𝑞, 𝑑 length-normalized.

Cosine for length-normalized vectors

102

102

3/10/24

18

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Cosine similarity illustrated

103

103

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• How similar are the novels:
o SaS: Sense and Sensibility

o PaP: Pride and Prejudice, and

o WH: Wuthering Heights?

Cosine similarity amongst 3 documents

104

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting

104
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

3 documents example contd.

105

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

Log frequency weighting After length normalization

cos(SaS,PaP) ≈ 0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
 ≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

105

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Computing cosine scores for ranking

106

106

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

tf-idf weighting has many variants

107

Columns headed ‘n’ are acronyms for weight schemes

Why is the base of the log in idf immaterial?

107
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Many search engines allow for different weightings for queries vs. documents

• SMART Notation: denotes the combination in use in an engine, with the notation

ddd.qqq, using the acronyms from the previous table

• A very standard weighting scheme is: lnc.ltc
• Document: logarithmic tf (l as first character), no idf and cosine normalization

• Query: logarithmic tf (l in leftmost column), idf (t in second column), no

normalization …

Weighting may differ in queries vs documents

108

A bad idea?

108

3/10/24

19

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

tf-idf example: lnc.ltc

109

Term Query Document Prod

tf-
raw

tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0
car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27
insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance
Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 + 02 +12 +1.32 »1.92

109

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Represent the query as a weighted tf-idf vector

• Represent each document as a weighted tf-idf vector

• Compute the cosine similarity score for the query vector and each document

vector

• Rank documents with respect to the query by score

• Return the top K (e.g., K = 10) to the user

Summary – vector space ranking

110

110

