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Unstructured (text) vs. structured (database) data in 1996
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Information Retrieval

* Information Retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).

o These days we frequently think first of web search, but there are many other cases:

mail search

* Legal information retrieva

Basic assumptions of Information Retrieval

* Collection: A set of documents

o Assume it is a static collection for the moment

* Goal: Retrieve documents with information that is relevant to the user’s

information need and helps the user complete a task
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Unstructured data in 1620

+ One could grep all of Shakespeare’s plays for Brutus and Caesar, then strip out lines
containing Calpurnia?

* Why is that not the answer?

o Slow (for large corpora)
© NOT Calpurnia is non
© Other operations (e.

ivial

., find the word Romans near countrymen) not feasible
© Ranked retrieval (best documents to return)
o Later lectures

* Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?

How good are the retrieved docs?

1]
DEAKIN

= Precision : Fraction of retrieved docs that are relevant to the user’ s

information need

= Recall : Fraction of relevant docs in collection that are retrieved

= More precise definitions and measurements to follow later

Term-document incidence matrices
AKIN

Antony and Cleopatra  Julius Caesar  The Tempest ~ Hamlet  Othello  Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

if play contains

Brutus AND Caesar BUT NOT

Calpurnia rd, 0 otherwise
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Incidence vectors ‘

* So, we have a o/1 vector for each term.
« To answer query: take the vectors for Brutus, Caesar and Calpurnia

(complemented) = bitwise AND.

© 110200 AND

Antony and Cleopatra  Julius Caesar  The Tempest  Hamlet  Othello  Macbeth
Antony 1 1 0 0 o 1

0110121 AND Brutus 1 1 0 1 o o
Cavsar 1 1 o 1 1 1

0101111 = Calpurnia 0 1 0 o o o
Cleopatra 1 0 0 0 o o

© 100100 mercy 1 0 1 1 1 1
worser 1 o 1 1 1 o

12
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Answers to query

* Antony and Cleopatra, Act lll, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

* Hamlet, Act Ill, Sceneii
Lord Polonius: | did enact Julius Caesar | was killed i the
Capitol; Brutus killed me.

13
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Bigger collections

* Consider N = 1 million documents, each with about 1000
words.

* Avg 6 bytes/word including spaces/punctuation
06GB of data in the documents.

* Say there are M = 5ooK distinct terms among these.

14

Inverted index

* For each term t, we must store a list of all documents that contain t.
o Identify each doc by a docID (doc serial number)

« Can we use fixed-size arrays for this?

Brutus w——>>[1 12 [ 4] 11] 31] 451 73[174]
Caesar w——>[T ] 2[4 5]6 [16[57[132]

Calpurnia | W"——>[2_[31[ 540101 | [ [ ]

What happens if the word Caesar
7 is added to document 14?

Can’t build the matrix

* 500K x 1M matrix has half-a-trillion o’s and 1's.

* But it has no more than one billion 1's. @

© matrix is extremely sparse.

* What's a better representation?

© We only record the 1 positions.

15

Inverted index

* We need variable-size postings lists
© On disk, a continuous run of postings is normal and best
© In memory, can use linked lists or variable length arrays
P
© Some tradeoffs in sizefease of insertion
Brutus w——>[1 T2 T 4[] 31145073174
Caesar w—>[ T 2T 41516 16571132

Calpurnia | "——>[2 13115401 [ [ T ]
(
\ ﬁ

17

Sorted by docID (more later on why).

18

3/10/24



Inverted index construction

Documents to 1
be indexed

= Friends, Romans, countrymen.
H

Linguistic modules

Modified tokens
Inverted index 1 roman I

. (e ] ——13}-116]

Token stream

Countrymen
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Indexer steps: Sort
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Initial stages of text processing

* Tokenization

o Cut character sequence into word tokens
© Deal with “John's", a state-of-the-art solution
* Normalization
© Map text and query term to same form
© YouwantU.5.A.and USA to match
+ Stemming
© We may wish different forms of a root to match
© authorize, authorization
+ Stop words
© We may omit very common words (or not)

O the, 3, to, of

DERKIN

20

Indexer steps: Dictionary & Postings

* Multiple term entries in a single document
are merged.
* Splitinto Dictionary and Postings

* Doc. frequency information is added.

Tom
o

=

term_doc. freq.

[ombitous [ 1]
e

Lrrrr

DERKIN
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Doc 1

Indexer steps: Token sequence

| did enact Julius
Caesar | was killed
i’ the Capitol;
Brutus killed me.

Doc 2

* Sequence of (Modified token, Document ID) pairs.

—

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

o =)

H

21

Where do we pay in storage?

Terms.

counts

‘postings lsts
2

IR system
implementation

How do we
index efficiently?
How much
storage do we
need?

24
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The merge

+ Walk through the two postings simultaneously, in time linear in the total number of
postings entries

m

Brutus [2}{4]-{s}{16 sz e {128

Gaesar [ {2} 451 {5-{o] 151} {os] &
TN A

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.

Answer

28

The index we just built

How do we process a query?

Later - what kinds of queries can we process?

26

Intersecting two postings lists (a “merge” algorithm)

INTERSECT(p1, p2)
1 answer — ()
2 while p; # NIL and p, # NIL

3 do if docID(p1) = doclD(p2)

4 then ApD(answer, docID(py))
5 p1  next(p1)

6 P2 — next(py)

7 else if docID(p1) < doclD(p2)
8 then p; « next(p1)

9 else p, — next(p>)

0 return answer

&
=

29

Query processing: AND

Consider processing the query:

Brutus AND Caesar

o Locate Brutus in the Dictionary;

© Retrieve its postings. Brutus ﬂ 32

o Locate Caesar in the Dictionary; Caesar | 1 E 21
O Retrieve its postings.
o “Merge” the two postings (intersect the doc sets):
7
i officem“re
computer = em
search
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IR vs. databases: Structured vs unstructured data

* Structured data tends to refer to information in “tables”

Employee Manager Salary
Smith Jones 50000
Chang Smith 60000
vy Smith 50000

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

31
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Unstructured data

« Typically refers to free text
* Allows
o Keyword queries including operators
© More sophisticated “concept” queries e.g.,
o find all web pages dealing with drug abuse

* Classic model for searching text documents

32

IR Models

* Modeling in IR is a complex process aimed at producing a ranking function
o Ranking function: a function that assigns scores to documents with regard to a given
query
« This process consists of two main tasks:
© The conception of a logical framework for representing documents and queries
© The definition of a ranking function that allows quantifying the similarities among

documents and queries

Semi-structured data: Fielded Indices

In fact almost no data is “unstructured”

E.g., this slide has distinctly identified zones such as the Title and Bullets
© ... to say nothing of linguistic structure

Facilitates “semi-structured” search such as

o Title containsdata AND Bullets containsearch

Oreven

o Title is about.Qbject Qriented Programming AND Author something like.stro*rup

o where * is the wild-card operator

33

Modeling and Ranking

35

* IR systems usually adopt index terms to index and retrieve documents

* Index term:

* Inarestricted sense: it is a keyword that has some meaning on its own; usually plays
the role of a noun

* Inamore general form: it is any word that appears in a document

* Retrieval based on index terms can be implemented efficiently
* Also, index terms are simple to refer to in a query

« Simplicity is important because it reduces the effort of query formulation

36
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* Aranking is an ordering of the documents that (hopefully) reflects their
relevance to a user query

* Thus, any IR system has to deal with the problem of predicting which
documents the users will find relevant

* This problem naturally embodies a degree of uncertainty, or vagueness

37

Modeling in Information Retrieval

* Inthis lecture, we will discuss the following models:
© The Boolean Model

© The Vector Model
© Probabilistic Model

40

IR Models

* AnIR model is a quadruple [D, Q, F, R(g;, d; )] where:

1. Disasetof logical views for the documents in the collection

2. Qisasetof logical views for the user queries

3. Fisaframework for modeling documents and queries

4. R(qi,dj) is aranking function

D
F—¢

Q
Ay

R(qi,d;)

38

The Boolean Model
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ATaxonomy of IR Models

39

Boolean queries: Exact match

* The Boolean retrieval model is being able to ask a query that is a Boolean
expression:

— Boolean Queries are queries using AND, OR and NOT to join query terms
+ Views each document as 358t of words

« s precise: document matches condition or not.
— Perhaps the simplest model to build an IR system on

* Primary commercial retrieval tool for 3 decades.
* Many search systems you still use are Boolean:
— Email, library catalog, Mac OS X Spotlight

42
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Example: WestLaw

« Largest commercial (paying subscribers) legal search service (started
1975; ranking added 1992; new federated search added 2010)
« Tens of terabytes of data; ~700,000 users

« Majority of users still use boolean queries
« Example query:
— What is the statute of limitations in cases involving the federal tort claims act?

— LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
* 13 = within 3 words, /S = in same sentence

43

* What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT (Antony OR Cleopatra)
* Can we always merge in “linear” time?
o Linear in what?

 Can we do better?

46

Example: WestLaw

« Another example query:
* Requirements for disabled people to be able to access a workplace
- disabl! /p access! /s work-site work-place (employment /3 place
« Note that SPACE is disjunction, not conjunction!
« Long, precise queries; proximity operators; incrementally developed; not like
web search
« Many professional searchers still like Boolean search
* You know exactly what you are getting
« But that doesn’'t mean it actually works better....

44

Query optimization

* What is the best order for query processing?
« Consider a query that is an AND of n terms.

« For each of the n terms, get its postings, then AND them together.

Brutus w——>[214 ] 8]16] 32[ 64[128 |
Caesar w——>[T [ 2T 3T 58 [T16[ 21 34

Calpurnia |w——>[13[16] [ [ [ T [ 1]

Query: Brutus AND Calpurnia AND Caesar

47

Boolean queries: More general merges

« Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

« Can we still run through the merge in time O(x+y)? What can we achieve?

45

Query optimization example

« Process in order of increasing freg:

o start with smallest set, then keep cutting further.

This is why we kept
document freq. in dictionary

Brutus wm——> 2 [ 4 [ 8 [16] 32[ 64[128
Caesar w——>[ 11 2] 3757816l 21 34

Calpurnia |mv——>[13716] [ [ [ T T 1]

Execute the query as (Calpurnia AND Brutus) AND Caesar.

48
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More general optimization

* Estimate the size of each OR by the sum of its doc. freq.’s (conservative).

* e.g., (madding OR crowd) AND (ignoble OR strife)
* Get doc. freq.’s for all terms.

* Process in increasing order of OR sizes.

49

Phrase queries

* We want to be able to answer queries such as “stanford university” —as a

phrase

* Thus the sentence “/ went to university at Stanford" is not a match.
© The concept of phrase queries has proven easily understood by users; one of the few
“advanced search” ideas that works
© Many more queries are implicit phrase queries
« For this, it no longer suffices to store only

<term : docs> entries

52

+ Recommend a query processing order for

Term Freq
(tangerine OR trees) AND eyes 213312
kaleidoscope 87009
(marmalade OR skies) AND ma,ma|adep 107913
. skies 271658
(kaleidoscope OR eyes) tangerine 46653
trees 316812

* Which two terms should we process first?

El

50

Standard Solution: Positional indexes

* In the postings, store, for each term the position(s) in which tokens of it
appear:

<term, number of docs containing term;
docz: positions, positionz2 ... ;
docz: position1, position2 ... ;

etc.>

53
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Positional index example

<be: 993427,

1:7,18, 33,72, 86,231;
2:3,149;

4:17, 191, 291, 430, 434;
5:363,367,...>

* For phrase queries, we use a merge algorithm recursively at the document

IWhich of docs 1,2,4,5|
could contain “to be
or not to be”™?

level

* But we now need to deal with more than just equality

54
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Processing a phrase query

* Merge their doc:position lists to enumerate all positions with “to be or not to be”

* Extract inverted index entries for each distinct term: to, be, or, not

rto:
© 211,37,74,222,551; 4:8,16,190,429,433; 7:13,23,19%; ...
>be:

O 1:17,19; 4:17,19%,291,430,434; 5:14,19,10%; ...

 Same general method for proximity searches

55

Positional index size

* Need an entry for each occurrence, not just once per document

* Index size depends on average document size
© Average web page has <1000 terms
o SEC filings, books, even some epic poems ... easily 100,000 terms

« Consider a term with frequency 0.1%

Document size Postings Positional postings.
1000 1 1
100,000 1 100
El

58

Proximity queries

LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

o Again, here, [k means “within k words of”.

Clearly, positional indexes can be used for such queries.

Can you make it work for any value of k?

o This is a little tricky to do correctly and efficiently

Exercise: Adapt the linear merge of postings to handle proximity queries.

56

Rules of thumb

* A positional index is 2—4 as large as a non-positional index

* Positional index size 35-50% of volume of original text

o Caveat: all of this holds for “English-like” languages

59

Positional index size

* A positional index expands postings storage substantially

o Even though indices can be compressed
* Nevertheless, a positional index is now standardly used because of the
power and usefulness of phrase and proximity queries ... whether used

explicitly or implicitly in a ranking retrieval system.

57
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Good for expert users with precise understanding of their needs and the collection

N . o Also good for applications: Applications can easily consume 1000s of results
* Collection statistics
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61 62 63

Problem with Boolean search: feast or famine

Ranked retrieval models Feast or famine: not a problem in ranked retrieval

Boolean queries often result in either too few (=0) or too many (1000s)

Rather than a set of documents satisfying a query expression, in ranked * When a system produces a ranked result set, large result sets are not an

results. retrieval, the system returns an ordering over the (top) documents in the issue
* Query 1: “standard user dlink 650" — 200,000 hits collection for a query o Indeed, the size of the result set is not an issue
* Query 2: “standard user dlink 650 no card found": o hits « Free text queries: Rather than a query language of operators and © We just show the top k ( = 10) results
+ It takes a lot of skill to come up with a query that produces a manageable expressions, the user’s query is just one or more words in a human language © We don't overwhelm the user
A . . . o Premise: the ranking algorithm works
number of hits. * In principle, there are two separate choices here, but in practice, ranked
© AND gives too few; OR gives too many retrieval has normally been associated with free text queries and vice versa
6 & 3

64 65 66
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Take 1: Jaccard coefficient

* jaccard(A,B)=|ANB|/|AUB|

* jaccard(A,A) =1

* jaccard(A,B)=o0if ANnB=0

* Aand Bdon't have to be the same size

* Always assigns a number between o and 1

70

Scoring as the basis of ranked retrieval

* We wish to return in order the documents most likely to be useful to the
searcher

* How can we rank-order the documents in the collection with respect to a
query?

* Assign a score —say in [0, 1] — to each document

* This score measures how well document and query “match”.

68

Jaccard coefficient: Scoring example

* What is the query-document match score that the Jaccard coefficient
computes for each of the two documents below?

* Query: ides of march
* Document 1: caesar died in march

* Document 2: the long march

Query-document matching scores

* We need a way of assigning a score to a query/document pair

* Let’s start with a one-term query

« If the query term does not occur in the document: score should be o

* The more frequent the query term in the document, the higher the score
(should be)

* We will look at a number of alternatives for this

69

Issues with Jaccard for scoring

« It doesn’t consider term frequency (how many times a term occurs in a
document)

* Rare terms in a collection are more informative than frequent terms. Jaccard
doesn't consider this information

* We need a more sophisticated way of normalizing for length

« Laterin this lecture, we'll use |A N Bl/ml

* ...instead of |A N B|/|A U B| (Jaccard) for length normalization.

71

72
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Bag of words model

* Vector representation doesn’t consider the ordering of words in a document

« John is quicker than Mary and Mary is quicker than John have the same vectors

* This is called the_bag of words model

* Inasense, this is a step back: The positional index was able to distinguish
these two documents

* The lIR book considers “recovering” positional information

* For now: bag of words model

76

Recall: Binary term-document incidence matrix

DERKIN

Antony and Cleopatra  Julius Caesar  The Tempest ~ Hamlet  Othello  Macbeth

Antony 1 1 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector € {0,1}!V!

74

Term frequency tf

DERKIN

* The term frequency tf, 4 of term t in document d is defined as the number

of times that t occurs in d
* We want to use tf when computing query-document match scores. But how?
 Raw term frequency is not what we want:
o A document with 10 occurrences of the term is more relevant than a document with 1
occurrence of the term
© But not 10 times more relevant

* Relevance does not increase proportionally with term frequency

.
77

Term-document count matrices

« Consider the number of occurrences of a term in a document:
o Each document is a[count vectorjin N': a column below

Antony and Cleopatra [ Julius Caesar | The Tempest ~ Hamlet  Othello  Macbeth
Antony 157 73 ] 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 221 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

75

Log-frequency weighting

* Thelog frequency weight of term t ind is

o= [1 +logio(tfea). iftfoa>0

0, otherwise
0-0,1—1,213,10— 2,1000 — 4, etc.
* Score for a document-query pair: sum over terms tin both g and d:

score(@.d)= ) [1+loguo(tfia)]
teqnd
 The score is 0 if none of the query terms is present in the document

78
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Document frequency, continued

« Frequent terms are less informative than rare terms

« Consider a query term that is frequent in the collection (e.g., high, increase, line)
* A document containing such a term is more likely to be relevant than a document that

doesn't

But it's not a sure indicator of relevance-

— For frequent terms, we want high positive weights for words like high, increase, and
line
* But lower weights than for rare terms

We will use document frequency (df) to capture this

82

Document frequency

Rare terms are more informative than frequent terms

o Recall stop words

Consider a term in the query that is rare in the collection (e.g.,

arachnocentric)

A document containing this term is very likely to be relevant to the query
arachnocentric

» — We want a high weight for rare terms like arachnocentric

80

« df, is the document frequency of t: the number of documents that contain t
o dfy is an inverse measure of the informativeness of ¢
odfy <N

* We define the idf (inverse document frequency) of t by

idf, = togio (V/az,)

© We use log1o(V/ay,) instead of ¥/4y, to “dampen” the effect of idf

8 ‘Will turn out the base of the log is immaterial.

Document frequency

* Rare terms are more informative than frequent terms

o Recall stop words

Consider a term in the query that is rare in the collection (e.g.,

arachnocentric)

A document containing this term is very likely to be relevant to the query

arachnocentric

— We want a high weight for rare terms like arachnocentric

81

idf example, suppose N = 12 million

calpurnia 1 6
animal 100 4
sunday 1,000 3
fiy 10,000 2
under 100,000 1
the 1,000,000 0
. _ N )
idf; = logio (N/y.
& There is one idf value for each term t in a collection

83

84
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Effect of idf on ranking

* Does idf have an effect on ranking for one-term queries, like
o iPhone
« idf has no effect on ranking one term queries
o idf affects the ranking of documents for queries with at least two terms
o For the query capricious person, idf weighting makes occurrences of capricious count

for much more in the final document ranking than occurrences of person.

85

TF-IDF Properties

* Plotting tf and idf in logarithmic scale yields

* We observe that tf and idf weights present power-law behaviors that balance each
other N

* The terms oflntermedlate ldf values d\splay maximum tf ldfwe\ghts and are most
interesting for ranking

88

Collection vs. Document frequen

cy

* The collection frequency of t is the number of occurrences of t in the collection,
counting multiple occurrences

m Collection frequency | Document frequency

* Example:

insurance

try

3

10,440 3,997

10,422 8,760

* Which word is a better search term (and should get a higher weight)?

86

Weighting schemes
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TF-IDF Properties

* Consider the tf, idf, and tf — idf weights for the Wall Street Journal reference collection
* To study their behavior, we would like to plot them together
* While idf is computed over all the collection, tf is computed on a per document basis. Thus, we

need a representation of tf based on all the collection, which is provided by the term collection
frequency

* This reasoning leads to the following tf and idf term weights:

N

we=1+ longtfu, idf, = togio(V4p,)

=

8

1

7

f-idf weighting

The tf — idf weight of a termis the product of its tf weight and its idf weight

tf —idfqa = (1 + lOglll(tft,d)) xlog,o (N/dﬁ)
Best known weighting scheme in information retrieval
© Note: the “-"in tf — idf is a hyphen, not a minus sign!
o Alternative names: tf. idf, tfxidf
Increases with the number of occurrences within a document

Increases with the rarity of the term in the collection
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Score for a document given a query

score(q,d) = Z tf —idfta

teqnd

* There are many variants
o How “tf” is computed (with/without logs)
o Whether the terms in the query are also weighted

O...
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Documents as vectors

* So we have a |V|-dimensional vector space

* Terms are axes of the space

« Documents are points or vectors in this space

* Very high-dimensional: tens of millions of dimensions when you apply this to
aweb search engine

* These are very sparse vectors - most entries are zero

94

Binary — count — weight matrix

Antony and Cleopatra  Julius Caesar  The Tempest ~ Hamlet  Othello  Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 121 6.1 0 1 0 0
Caesar 8.59 254 [ 1.51 0.25 0
Calpumia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 151 0 19 0.12 5.25 0.88
worser 137 0 0.1 4.15 0.25 195

Each document is now represented by a real-valued vector of tf-idf weights € RIVI

92

Queries as vectors

+ Keyidea1: Do the same for queries: represent them as vectors in the space

* Keyidea 2: Rank documents according to their proximity to the query in this space

* proximity = similarity of vectors

* proximity = inverse of distance

* Recall: We do this because we want to get away from the you're-either-in-or-out
Boolean model.

* Instead: rank more relevant documents higher than less relevant documents

95

Vector space scoring
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reproduction

Formalizing vector space proximity

« First cut: distance between two points

o (=distance between the end points of the two vectors)
* Euclidean distance?
* Euclidean distance is a bad idea . ..

* ... because Euclidean distance is large for vectors of different lengths
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Why distance is a bad idea

* The Euclidean distance between g dy

and d, is large even though the

distribution of terms in the query g ,
and the distribution of terms in the /

document d, are very similar.

| ds

JEALOUS
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Length normalization

* Avector can be (length-) normalized by dividing each of its components by its length — for this we

use the Ly norm:

« Dividing a vector by its L, norm makes it a unit (length) vector (on surface of unit hypersphere)
« Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical
vectors after length-normalization.

o Long and short documents now have comparable weights

100

Use angle instead of distance

* Thought experiment: take a document d and append it to itself. Call this
document d'

* “Semantically” d and d’ have the same content

* The Euclidean distance between the two documents can be quite large

* The angle between the two documents is o, corresponding to maximal
similarity

* Key idea: Rank documents according to angle with query

el

From angles to cosines

* The following two notions are equivalent
o Rank documents indecreasing order
of the angle between query and

document

o Rank documents iningreasing order

of cosine(query,document)

+ Cosine is a monotonically decreasing
function for the interval [0°, 180°] But how — and why —

should we be computing

98

cosine(query,document)

‘Dot product‘ ‘ nit vectors‘

A =

Xl
vl 2 " 2
| a2
g;is the tf-idf weight of term i in the query
d;is the tf-idf weight of term i in the document

cos(g.d) =

cos(g,d) is the cosine similarity of g and d ... or,
equivalently, the cosine of the angle between g and d.

oo cosines?

99

Cosine for length-normalized vectors

* For length-normalized vectors, cosine similarity is simply the dot product (or
scalar product):

. vl
cos(@d)=G-d=) ad

=1

o for g, d length-normalized.

101
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Cosine similarity illustrated

POOR
1 v(d)
/i
A (d2
/ / -
0 \
\
\
\
\
. ()
. 0 7 RICH
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Computing cosine scores for ranking

COSINESCORE(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate w¢ q and fetch postings list for t
5 for each pair(d,tf; 4) in postings list
6 do Scores[d]+ = wr g X Wt g
7 Read the array Length
8 for each d
9 do Scores|[d] = Scores|d]/Length[d]

. 10 return Top K components of Scores]]
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Cosine similarity amongst 3 documents

How similar are the novels:
o SaS: Sense and Sensibility

o PaP: Pride and Prejudice, and
o WH: Wuthering Heights?

Cm= =S = @]
58 20

affection 15

jealous 10 7 "
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting

3 documents example contd.

Log frequency weighting

| torm | sas | Pap_|_wh_|
affection 3.06 276 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0o 178
wuthering 0 0 2.58

cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69

104

tf-idf weighting has many variants

a (augmented) 0.5+

1 ifteg >0
RCCEU I P

st
Llogave) ey

Term frequency Document frequency Normalization
o (natural)  thg 0 (o) T e
I (logarithm) 1+ log(tf.q) t (idf) log 4 < (cosine)
‘ Noem==rd

P (probidf)  max{0,log A4} | u (pivoted 1/

unique)
b (byte size) 1/ Charlength®,
a<l

Columns headed ‘n’ are acronyms for weight schemes

Why is the base of the log in idf immaterial?

After length normalization

| term | sas | pap | wh_|
affection 0789 0832 0524
jealous 0515 0555 0.465
gossip 0.335 0 0405
wuthering 0 0 0588

cos(Sas,PaP) » 0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0
9

205 Why do we have cos(SaS,PaP) > cos(SaS,WH)?

105

Weighting may differ in queries vs documents

normalization ...

107

* Many search engines allow for different weightings for queries vs. documents
* SMART Notation: denotes the combination in use in an engine, with the notation
ddd.qqq, using the acronyms from the previous table

* Avery standard weighting scheme is: Inc.ltc
* Document: logarithmic tf (| as first character), no i

and cosine normalization

* Query: logarithmic tf (I in leftmost column), idf (t in second column), no

108
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tf-idf example: Inc.ltc @

Document: car insurance auto insurance
Query: best car insurance

Query ‘ Document Prod

t- thwt df idf  wt iz tfraw  thwt wt n’lize

raw
auto 0 0 5000 23 0 0 1 1 1 052 0
best 1 1 50000 13 13 034 0 [ 0 0 0
car 1 1 10000 20 20 052 1 1 1 052 027
insurance 1 1 1000 30 30 078 2 13 13 068 053

Exercise: what is N, the number of docs?
Doc length =1* + 0% + I +13* ~1.92

I Score = 0+0+0.27+0.53 = 0.8

Summary - vector space ranking

1]
DEAKIN

* Represent the query as a weighted tf-idf vector

* Represent each document as a weighted tf-idf vector

« Compute the cosine similarity score for the query vector and each document
vector

* Rank documents with respect to the query by score

* Return the top K (e.g., K = 10) to the user

10
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